

Welcome to gotun

This is written from scratch version of Tunir [https://tunir.rtfd.io] in
golang.

Contents:

	Install Instructions
	Install Go & setup the environment

	Install gotun

	Configuration of Jobs
	OpenStack based job

	User data on OpenStack

	Multiple VM(s) on OpenStack

	AWS based job

	For remote systems

	Detailed description of the tests
	Polling the VM(s)

	Coping files over

	Multiple VM based tests

	Rebuild of VM(s) on OpenStack

	Creating inventory file for Ansible based tests

	Running Ansible on the HOST as part of a test

	Examples of usage

Indices and tables

	Index

	Module Index

	Search Page

Install Instructions

gotun is written in golang. To install the tool, you will need golang on your system.

Install Go & setup the environment

You can install from your distro’s package, or you can install the upstream package. After
that we will create a workspace ~/gocode/. Add the following in your ~/.bashrc file,
and then source it.

export PATH=~/gocode/bin:$PATH
export GOPATH=~/gocode/

Install gotun

$ go get github.com/kushaldas/gotun

After this you should have the gotun binary in the ~/gocode/bin/ directory.

Configuration of Jobs

gotun expects the job configuration in a yaml file. The following are two
different examples of the job. Each job has two files, one is the yaml file
which contains the configuration (say AWS or Openstack), and also the jobname.txt
file which contains the commands to execute.

OpenStack based job

BACKEND: "openstack"

OS_AUTH_URL: "URL"
TENANT_ID: "Your tenant id"
USERNAME: "USERNAME"
PASSWORD: "PASSWORD"
OS_REGION_NAME: "RegionOne"
OS_IMAGE: "Fedora-Atomic-24-20161031.0.x86_64.qcow2"
OS_FLAVOR: "m1.medium"
OS_SECURITY_GROUPS:
 - "group1"
 - "default"
OS_NETWORK: "NETWORK_POOL_ID"
OS_FLOATING_POOL: "POOL_NAME"
OS_KEYPAIR: "KEYPAIR NAME"
key: "Full path to the private key (.pem file)"

In the above example gotun expects the Image is already available in the
cloud. If you want to upload a new image for the test, and then delete it after
the test, then provide a full path to the image .qcow2 file in OS_IMAGE.

OS_IMAGE: "/home/kdas/Fedora-Atomic-24-20161031.0.x86_64.qcow2"

You can also set the following environment variables for the OpenStack job.

	OS_TENANT_ID

	OS_USERNAME

	OS_PASSWORD

User data on OpenStack

You can provide path to a cloud-config userdata file in the configuration file. The following
line expects a proper YAML file in the given location.

user-data: "/home/user/work/data.yml"

You can learn more about cloud-init (userdata) examples
here [https://www.zetta.io/en/help/articles-tutorials/cloud-init-reference/].

Multiple VM(s) on OpenStack

In case you want to spin up more than one vm on OpenStack, then add a NUMBER value to the yml file.

NUMBER: 3

AWS based job

BACKEND: "aws"

AWS_AMI: "ami-df3367bf"
AWS_INSTANCE: "t2.medium"
AWS_KEYNAME: "The name of the key"
AWS_SUBNET: "subnet-ID"
AWS_SECURITYGROUPIDS:
 - "sg-groupid"
AWS_REGION: "us-west-1"
USERKEY: "YOURKEY"
SECRET: "SECRET KEY PART"
key: "PATH to the .pem file"

Update the configuration based on your need. You can see that you will need to
find subnet-id, security group ids for each region to work with.

You can also set the following environment variables for the AWS job.

	AWS_USERKEY

	AWS_SECRET

For AWS based jobs, one can also pass the AMI_ID and REGION by command line arguments.
The following two new flags were added for the same.

	
--ami-id value
	the AMI ID for AWS jobs

	
--region value
	Region name for AWS based jobs

For remote systems

BACKEND: "bare"
key: "Path to the .pem file"
PORT: 22
USER: "username"
VMS:
 vm1: IP1
 vm2: IP2

The keys of VMS are the vm numbers, you will have to mark at least vm1 and the corresponding
IP address.

Note

The default username is fedora, and default port is 22.

Detailed description of the tests

The jobname.txt text file contains the bash commands to run in the system, one command per line. In case you are
rebooting the system, you may want to use SLEEP NUMBER_OF_SECONDS directive there.

If a command starts with @@ sign, it means the command is supposed to fail. Generally, we check the return codes
of the commands to find if it failed, or not. For Docker container-based systems, we track the stderr output.

We can also have non-gating tests, means these tests can pass or fail, but the whole job status will depend
on other gating tests. Any command in jobname.txt starting with ## sign will mark the test as non-gating.

Example:

curl -O https://kushal.fedorapeople.org/tunirtests.tar.gz
ls /
foobar
ls /root
sudo ls /root
date
@@ sudo reboot
SLEEP 40
ls /etc

Polling the VM(s)

We can use the POLL directive in the jobfile after a reboot, this will try to POLL every VM to make sure that we
have the SSH service back in all the VM((s).

Example:

ls
@@ sudo reboot
POLL
ls /

Coping files over

gotun can copy files over to any VM using scp. The following is an example
where we are copying a binary file into bin directory inside home of the user
on vm1.

COPY: localfile.bin vm1:./bin/

Multiple VM based tests

In case of tests containing multiple VM(s), one mark the tests with vm numbers. This way, we decide which test will
run on which vm. The numbers start from vm1 to vm9.

Example:

vm1 wget https://kushaldas.in
vm2 sudo mkdir /root/hello_dir
vm1 sudo dnf install pss -y
vm1 which pss

If no vm number is marked at the begining of any line, gotun assumes that the test is supposed to run on vm1.

Rebuild of VM(s) on OpenStack

Note

This feature is only available for OpenStack based jobs. For other kind of tests, this will do nothing.

REBUILD_SERVERS directive will rebuild all of the avialable VM(s) on OpenStack. They will try to POLL the VM(s) after
rebuilding them. This step is sequential for now. In future, we will be doing this in parallal.

echo "hello asd" > ./hello.txt
vm1 sudo cat /etc/machine-id
mkdir {push,pull}
ls -l ./
pwd
REBUILD_SERVERS
sudo cat /etc/machine-id
ls -l ./
pwd

The following is the output from the above mentioned test.

$ gotun --job fedora
Starts a new Tunir Job.

Server ID: e0d7b55a-f066-4ff8-923c-582f3c9be29b
Let us wait for the server to be in running state.
Time to assign a floating pointip.
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Server ID: a0b810e6-0d7f-4c9e-bc4d-1e62b082673d
Let us wait for the server to be in running state.
Time to assign a floating pointip.
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Executing: echo "hello asd" > ./hello.txt
Executing: vm1 sudo cat /etc/machine-id
Executing: mkdir {push,pull}
Executing: ls -l ./
Executing: pwd
Going to rebuild: 209.132.184.241
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Going to rebuild: 209.132.184.242
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Executing: sudo cat /etc/machine-id
Executing: ls -l ./
Executing: pwd

Result file at: /tmp/tunirresult_180507156

Job status: true

command: echo "hello asd" > ./hello.txt
status:true

command: sudo cat /etc/machine-id
status:true

e0d7b55af0664ff8923c582f3c9be29b

command: mkdir {push,pull}
status:true

command: ls -l ./
status:true

total 4
-rw-rw-r--. 1 fedora fedora 10 Jan 25 13:58 hello.txt
drwxrwxr-x. 2 fedora fedora 6 Jan 25 13:58 pull
drwxrwxr-x. 2 fedora fedora 6 Jan 25 13:58 push

command: pwd
status:true

/var/home/fedora

command: sudo cat /etc/machine-id
status:true

e0d7b55af0664ff8923c582f3c9be29b

command: ls -l ./
status:true

total 0

command: pwd
status:true

/var/home/fedora

Total Number of Tests:8
Total NonGating Tests:0
Total Failed Non Gating Tests:0

Success.

Creating inventory file for Ansible based tests

Ansible [https://www.ansible.com/] is a powerful choice with many different usecases. One such usecase is about testing.
Sometimes we just setup the whole test environment using Ansible, and some other times the whole testsuite is written
on top of ansible. To enable using of predefined Ansible playbooks, gotun provides a file current_run_info.json for each
run of job. This file contains a dictionary of vm numbers, and corresponding IP address, and also the keyfile value with
the path of the private keyfile. This can be used with a simple Python or shell script to create the actual inventory file.
For example, the following script createinventory.py will create a file called inventory in the current directory, and it assumes that there
will be 2 VM(s) are avaiable (means it is running on OpenStack).

#!/usr/bin/env python3
import json

data = None
with open("current_run_info.json") as fobj:
 data = json.loads(fobj.read())

user = data['user']
host1 = data['vm1']
host2 = data['vm2']
key = data['keyfile']

result = """{0} ansible_ssh_host={1} ansible_ssh_user={2} ansible_ssh_private_key_file={3}
{4} ansible_ssh_host={5} ansible_ssh_user={6} ansible_ssh_private_key_file={7}""".format(host1,host1,user,key,host2,host2,user,key)
with open("inventory", "w") as fobj:
 fobj.write(result)

As you can see, we are reading the current_run_info.json file first, and then creating a file called inventory. We can
then execute this script by using the HOSTCOMMAND directive in the test.

HOSTCOMMAND: ./createinventory.py

Running Ansible on the HOST as part of a test

The next step is to run Ansible playbook on the host system as a test. This can be done with a HOSTTEST directive. The
following example test file will first create the inventory file using a HOSTCOMMAND directive, and then execute the an
ansible playbook.

HOSTCOMMAND: ./onevm.py
HOSTTEST: ansible-playbook -b -i inventory atomic-host-tests/tests/improved-sanity-test/main.yml

Examples of usage

Here are a few blog posts explaining various example use-cases of gotun.

	Testing redis containers on Fedora Atomic [https://kushaldas.in/posts/testing-a-redis-container-using-gotun.html]

	Testing MariaDB conatainer on Fedora [https://kushaldas.in/posts/testing-fedora-mariadb-layered-image-using-gotun.html]

	Using Ansible inside of gotun [https://kushaldas.in/posts/testing-fedora-atomic-images-using-upstream-atomic-host-tests.html]

Index

 nav.xhtml

 Table of Contents

 		Welcome to gotun

 		Install Instructions

 		Install Go & setup the environment

 		Install gotun

 		Configuration of Jobs

 		OpenStack based job

 		User data on OpenStack

 		Multiple VM(s) on OpenStack

 		AWS based job

 		For remote systems

 		Detailed description of the tests

 		Polling the VM(s)

 		Coping files over

 		Multiple VM based tests

 		Rebuild of VM(s) on OpenStack

 		Creating inventory file for Ansible based tests

 		Running Ansible on the HOST as part of a test

 		Examples of usage

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

