
gotun Documentation
Release 0.1

Kushal Das

Apr 03, 2017

Contents

1 Install Instructions 3
1.1 Install Go & setup the environment . 3
1.2 Install gotun . 3

2 Configuration of Jobs 5
2.1 OpenStack based job . 5
2.2 User data on OpenStack . 6
2.3 Multiple VM(s) on OpenStack . 6
2.4 AWS based job . 6
2.5 For remote systems . 7

3 Detailed description of the tests 9
3.1 Polling the VM(s) . 9
3.2 Coping files over . 10
3.3 Multiple VM based tests . 10
3.4 Rebuild of VM(s) on OpenStack . 10
3.5 Creating inventory file for Ansible based tests . 13
3.6 Running Ansible on the HOST as part of a test . 13

4 Examples of usage 15

5 Indices and tables 17

i

ii

gotun Documentation, Release 0.1

This is written from scratch version of Tunir in golang.

Contents:

Contents 1

https://tunir.rtfd.io

gotun Documentation, Release 0.1

2 Contents

CHAPTER 1

Install Instructions

gotun is written in golang. To install the tool, you will need golang on your system.

Install Go & setup the environment

You can install from your distro’s package, or you can install the upstream package. After that we will create a
workspace ~/gocode/. Add the following in your ~/.bashrc file, and then source it.

export PATH=~/gocode/bin:$PATH
export GOPATH=~/gocode/

Install gotun

$ go get github.com/kushaldas/gotun

After this you should have the gotun binary in the ~/gocode/bin/ directory.

3

gotun Documentation, Release 0.1

4 Chapter 1. Install Instructions

CHAPTER 2

Configuration of Jobs

gotun expects the job configuration in a yaml file. The following are two different examples of the job. Each job has
two files, one is the yaml file which contains the configuration (say AWS or Openstack), and also the jobname.txt file
which contains the commands to execute.

OpenStack based job

BACKEND: "openstack"

OS_AUTH_URL: "URL"
TENANT_ID: "Your tenant id"
USERNAME: "USERNAME"
PASSWORD: "PASSWORD"
OS_REGION_NAME: "RegionOne"
OS_IMAGE: "Fedora-Atomic-24-20161031.0.x86_64.qcow2"
OS_FLAVOR: "m1.medium"
OS_SECURITY_GROUPS:

- "group1"
- "default"

OS_NETWORK: "NETWORK_POOL_ID"
OS_FLOATING_POOL: "POOL_NAME"
OS_KEYPAIR: "KEYPAIR NAME"
key: "Full path to the private key (.pem file)"

In the above example gotun expects the Image is already available in the cloud. If you want to upload a new image for
the test, and then delete it after the test, then provide a full path to the image .qcow2 file in OS_IMAGE.

OS_IMAGE: "/home/kdas/Fedora-Atomic-24-20161031.0.x86_64.qcow2"

You can also set the following environment variables for the OpenStack job.

• OS_TENANT_ID

5

gotun Documentation, Release 0.1

• OS_USERNAME

• OS_PASSWORD

User data on OpenStack

You can provide path to a cloud-config userdata file in the configuration file. The following line expects a proper
YAML file in the given location.

user-data: "/home/user/work/data.yml"

You can learn more about cloud-init (userdata) examples here.

Multiple VM(s) on OpenStack

In case you want to spin up more than one vm on OpenStack, then add a NUMBER value to the yml file.

NUMBER: 3

AWS based job

BACKEND: "aws"

AWS_AMI: "ami-df3367bf"
AWS_INSTANCE: "t2.medium"
AWS_KEYNAME: "The name of the key"
AWS_SUBNET: "subnet-ID"
AWS_SECURITYGROUPIDS:

- "sg-groupid"
AWS_REGION: "us-west-1"
USERKEY: "YOURKEY"
SECRET: "SECRET KEY PART"
key: "PATH to the .pem file"

Update the configuration based on your need. You can see that you will need to find subnet-id, security group ids for
each region to work with.

You can also set the following environment variables for the AWS job.

• AWS_USERKEY

• AWS_SECRET

For AWS based jobs, one can also pass the AMI_ID and REGION by command line arguments. The following two
new flags were added for the same.

--ami-id value the AMI ID for AWS jobs

--region value Region name for AWS based jobs

6 Chapter 2. Configuration of Jobs

https://www.zetta.io/en/help/articles-tutorials/cloud-init-reference/

gotun Documentation, Release 0.1

For remote systems

BACKEND: "bare"
key: "Path to the .pem file"
PORT: 22
USER: "username"
VMS:

vm1: IP1
vm2: IP2

The keys of VMS are the vm numbers, you will have to mark at least vm1 and the corresponding IP address.

Note: The default username is fedora, and default port is 22.

2.5. For remote systems 7

gotun Documentation, Release 0.1

8 Chapter 2. Configuration of Jobs

CHAPTER 3

Detailed description of the tests

The jobname.txt text file contains the bash commands to run in the system, one command per line. In case you are
rebooting the system, you may want to use SLEEP NUMBER_OF_SECONDS directive there.

If a command starts with @@ sign, it means the command is supposed to fail. Generally, we check the return codes
of the commands to find if it failed, or not. For Docker container-based systems, we track the stderr output.

We can also have non-gating tests, means these tests can pass or fail, but the whole job status will depend on other
gating tests. Any command in jobname.txt starting with ## sign will mark the test as non-gating.

Example:

curl -O https://kushal.fedorapeople.org/tunirtests.tar.gz
ls /
foobar
ls /root
sudo ls /root
date
@@ sudo reboot
SLEEP 40
ls /etc

Polling the VM(s)

We can use the POLL directive in the jobfile after a reboot, this will try to POLL every VM to make sure that we have
the SSH service back in all the VM((s).

Example:

ls
@@ sudo reboot
POLL
ls /

9

gotun Documentation, Release 0.1

Coping files over

gotun can copy files over to any VM using scp. The following is an example where we are copying a binary file into
bin directory inside home of the user on vm1.

COPY: localfile.bin vm1:./bin/

Multiple VM based tests

In case of tests containing multiple VM(s), one mark the tests with vm numbers. This way, we decide which test will
run on which vm. The numbers start from vm1 to vm9.

Example:

vm1 wget https://kushaldas.in
vm2 sudo mkdir /root/hello_dir
vm1 sudo dnf install pss -y
vm1 which pss

If no vm number is marked at the begining of any line, gotun assumes that the test is supposed to run on vm1.

Rebuild of VM(s) on OpenStack

Note: This feature is only available for OpenStack based jobs. For other kind of tests, this will do nothing.

REBUILD_SERVERS directive will rebuild all of the avialable VM(s) on OpenStack. They will try to POLL the VM(s)
after rebuilding them. This step is sequential for now. In future, we will be doing this in parallal.

echo "hello asd" > ./hello.txt
vm1 sudo cat /etc/machine-id
mkdir {push,pull}
ls -l ./
pwd
REBUILD_SERVERS
sudo cat /etc/machine-id
ls -l ./
pwd

The following is the output from the above mentioned test.

$ gotun --job fedora
Starts a new Tunir Job.

Server ID: e0d7b55a-f066-4ff8-923c-582f3c9be29b
Let us wait for the server to be in running state.
Time to assign a floating pointip.
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

10 Chapter 3. Detailed description of the tests

gotun Documentation, Release 0.1

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Server ID: a0b810e6-0d7f-4c9e-bc4d-1e62b082673d
Let us wait for the server to be in running state.
Time to assign a floating pointip.
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Executing: echo "hello asd" > ./hello.txt
Executing: vm1 sudo cat /etc/machine-id
Executing: mkdir {push,pull}
Executing: ls -l ./
Executing: pwd
Going to rebuild: 209.132.184.241
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Going to rebuild: 209.132.184.242
Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Polling for a successful ssh connection.

Executing: sudo cat /etc/machine-id
Executing: ls -l ./
Executing: pwd

Result file at: /tmp/tunirresult_180507156

3.4. Rebuild of VM(s) on OpenStack 11

gotun Documentation, Release 0.1

Job status: true

command: echo "hello asd" > ./hello.txt
status:true

command: sudo cat /etc/machine-id
status:true

e0d7b55af0664ff8923c582f3c9be29b

command: mkdir {push,pull}
status:true

command: ls -l ./
status:true

total 4
-rw-rw-r--. 1 fedora fedora 10 Jan 25 13:58 hello.txt
drwxrwxr-x. 2 fedora fedora 6 Jan 25 13:58 pull
drwxrwxr-x. 2 fedora fedora 6 Jan 25 13:58 push

command: pwd
status:true

/var/home/fedora

command: sudo cat /etc/machine-id
status:true

e0d7b55af0664ff8923c582f3c9be29b

command: ls -l ./
status:true

total 0

command: pwd
status:true

/var/home/fedora

Total Number of Tests:8
Total NonGating Tests:0
Total Failed Non Gating Tests:0

12 Chapter 3. Detailed description of the tests

gotun Documentation, Release 0.1

Success.

Creating inventory file for Ansible based tests

Ansible is a powerful choice with many different usecases. One such usecase is about testing. Sometimes we just
setup the whole test environment using Ansible, and some other times the whole testsuite is written on top of ansible.
To enable using of predefined Ansible playbooks, gotun provides a file current_run_info.json for each run of job. This
file contains a dictionary of vm numbers, and corresponding IP address, and also the keyfile value with the path of the
private keyfile. This can be used with a simple Python or shell script to create the actual inventory file. For example,
the following script createinventory.py will create a file called inventory in the current directory, and it assumes that
there will be 2 VM(s) are avaiable (means it is running on OpenStack).

#!/usr/bin/env python3
import json

data = None
with open("current_run_info.json") as fobj:

data = json.loads(fobj.read())

user = data['user']
host1 = data['vm1']
host2 = data['vm2']
key = data['keyfile']

result = """{0} ansible_ssh_host={1} ansible_ssh_user={2} ansible_ssh_private_key_
→˓file={3}
{4} ansible_ssh_host={5} ansible_ssh_user={6} ansible_ssh_private_key_file={7}""".
→˓format(host1,host1,user,key,host2,host2,user,key)
with open("inventory", "w") as fobj:

fobj.write(result)

As you can see, we are reading the current_run_info.json file first, and then creating a file called inventory. We can
then execute this script by using the HOSTCOMMAND directive in the test.

HOSTCOMMAND: ./createinventory.py

Running Ansible on the HOST as part of a test

The next step is to run Ansible playbook on the host system as a test. This can be done with a HOSTTEST directive.
The following example test file will first create the inventory file using a HOSTCOMMAND directive, and then execute
the an ansible playbook.

HOSTCOMMAND: ./onevm.py
HOSTTEST: ansible-playbook -b -i inventory atomic-host-tests/tests/improved-sanity-
→˓test/main.yml

3.5. Creating inventory file for Ansible based tests 13

https://www.ansible.com/

gotun Documentation, Release 0.1

14 Chapter 3. Detailed description of the tests

CHAPTER 4

Examples of usage

Here are a few blog posts explaining various example use-cases of gotun.

• Testing redis containers on Fedora Atomic

• Testing MariaDB conatainer on Fedora

• Using Ansible inside of gotun

15

https://kushaldas.in/posts/testing-a-redis-container-using-gotun.html
https://kushaldas.in/posts/testing-fedora-mariadb-layered-image-using-gotun.html
https://kushaldas.in/posts/testing-fedora-atomic-images-using-upstream-atomic-host-tests.html

gotun Documentation, Release 0.1

16 Chapter 4. Examples of usage

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

	Install Instructions
	Install Go & setup the environment
	Install gotun

	Configuration of Jobs
	OpenStack based job
	User data on OpenStack
	Multiple VM(s) on OpenStack
	AWS based job
	For remote systems

	Detailed description of the tests
	Polling the VM(s)
	Coping files over
	Multiple VM based tests
	Rebuild of VM(s) on OpenStack
	Creating inventory file for Ansible based tests
	Running Ansible on the HOST as part of a test

	Examples of usage
	Indices and tables

